Solar illumination control of ionospheric outflow above polar cap arcs
نویسندگان
چکیده
Wemeasure the flux density, composition, and energy of outflowing ions above the polar cap, accelerated by quasi-static electric fields parallel to the magnetic field and associated with polar cap arcs, using Cluster. Mapping the spacecraft position to its ionospheric foot point, we analyze the dependence of these parameters on the solar zenith angle (SZA). We find a clear transition at SZA between ∼94◦ and ∼107◦, with the O+ flux higher above the sunlit ionosphere. This dependence on the illumination of the local ionosphere indicates that significant O+ upflow occurs locally above the polar ionosphere. The same is found for H+, but to a lesser extent. This effect can result in a seasonal variation of the total ion upflow from the polar ionosphere. Furthermore, we show that low-magnitude field-aligned potential drops are preferentially observed above the sunlit ionosphere, suggesting a feedback effect of ionospheric conductivity.
منابع مشابه
Dynamical Effects of Ionospheric Conductivity on the Formation of Polar Cap Arcs
By using a magnetosphere-ionosphere (M-I) coupling model of polar cap arcs [Zhu et al., 1993], a systematic model study of the effects of ionospheric background conductivity on the formation of polar cap arcs has been conducted. The variations of the ionospheric background conductivity in the model study cover typical ionospheric onditions, including solar minimum, solar maximum, winter, and su...
متن کاملExploring the influence of ionospheric O+ outflow on magnetospheric dynamics: The effect of outflow intensity
[1] The ionospheric O+ outflow varies dramatically during geomagnetic activities, but the influence of its initial characteristics on the magnetospheric dynamics has not been well established. To expand a previous study on the impact of ionospheric heavy ions outflow originating from different source regions on the magnetotail dynamics and dayside reconnection rate, this study conducts two idea...
متن کاملA new formulation for the ionospheric cross polar cap potential including saturation effects
Abstract. It is known that the ionospheric cross polar cap potential (CPCP) saturates when the interplanetary magnetic field (IMF) Bz becomes very large. Few studies have offered physical explanations as to why the polar cap potential saturates. We present 13 events in which the reconnection electric field (REF) goes above 12 mV/m at some time. When these events are examined as typically done i...
متن کاملClimatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013
Global positioning system scintillation and total electron content (TEC) data have been collected by ten specialized GPS Ionospheric Scintillation and TEC Monitors (GISTMs) of the Canadian High Arctic Ionospheric Network (CHAIN). The phase scintillation index σ8 is obtained from the phase of the L1 signal sampled at 50 Hz. Maps of phase scintillation occurrence as a function of the altitude-adj...
متن کاملModeling ionospheric outflows and their impact on the magnetosphere, initial results
[1] Ionospheric outflow has been shown to be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. We present the results of new efforts to model the source and effects of out-flowing plasma in the Space Weather Modeling Framework (SWMF). In particular, we develop and use the Polar Wind Outflow Model (PWOM), a field-aligned, multifluid, mu...
متن کامل